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Abstract 

A set V of nondegenerate convex polygons P in R2, or polyhedra P in R3, will be called 
normal if the intersection of any two of the P's of V is a face (in the case of polyhedra), 
an edge, a vertex, or empty. V is called strongly normal (SN) if it is normal and, for all 
P, Pi,..., Pn, if each P; intersects P and / = Px f) ... f~l Pn is nonempty, then I intersects 
P. The union of the Pt- € V that intersect P G V is called the neighborhood of P in V, 
and is denoted by NT(P). We prove that V is SN iff for any V C V and P € P', iV^(P) 
is simply connected. Thus SN characterizes sets V of polyhedra (or polygons) in which 
the neighborhood of any polyhedron, relative to any subset V of V, is simply connected. 
Tessellations of R2 or R3 into convex polygons or polyhedra are normal, but they may not 
be SN; for example, the square and hexagonal regular tessellations of R2 are SN, but the 
triangular regular tessellation is not. 
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1 Introduction 

In a recent report [1] on sets of tetrahedra, the authors introduced properties called normal- 
ity and strong normality (SN), and showed that SN implies that the neighborhood of any 
tetrahedron (= the union of the tetrahedra in the set, including itself, that intersect it) is 
simply connected. In this note we generalize SN to sets of convex polyhedra (or polygons, in 
the plane), and show that it is in fact equivalent to simple-connectedness of neighborhoods. 
More precisely, we show that V is SN iff for any V C V, the neighborhood N-pi(P) of any 
P € V is simply connected. Tessellations of the plane (or 3-space) into convex polygons 
(or polyhedra) are normal, but they may not be SN; for example, the square and hexagonal 
regular tessellations of the plane are SN, but the triangular regular tessellation is not. 

Most of the research on digital geometry (connectedness, distance, thinning, convexity, 
etc.) has dealt with the square (or cubical) grid, though it is well known that other grids 
sometimes have computational advantages. A collection of references on digital geometry in 
which other grids, or other discrete spaces, are used can be found in [2]. These references deal 
primarily with other regular grids (hexagonal or triangular, in the plane); a notable exception 
was Sklansky's work on digital convexity [3], which was based on an arbitrary tessellation 
of the plane into convex polygons [4]. The present paper shows that from a topological 
standpoint, there may be significant differences between different types of tessellations, in 
both two and three dimensions. 

2 The two-dimensional case 

A set V of convex polygons in the plane will be called normal if 

a) Each polygon is nondegenerate (i.e., has a nonempty interior) 

b) The intersection of any two of the polygons is an edge, a vertex, or empty 

Evidently, three or more polygons of V cannot share an edge; thus their intersection must 
be either a vertex or empty. If V covers the plane, it will be called a tessellation. 

V is called strongly normal (SN) if it is normal and, for all P, Pi,... ,Pn (n > 1) G V, 
if each Pi intersects P and I = Pi C\... C\ Pn is nonempty, then / intersects P. Note that if 
n > 3, / must be a single point and so must be a vertex of P. Note also that, like normality, 
strong normality is hereditary: If it holds for V, it holds for any V C V. 

The neighborhood N-p(P) of P in V is the union of all Q € V that intersect P (including 
P itself). 

Theorem 1: If V is SN, then for any V C V the neighborhood N<p>(P) of any P € V 
is simply connected. 

Proof: Any curve in N-p'(P) can be decomposed into nondegenerate arcs such that the 
interior of each arc is contained in at most one of the polygons, or the intersection of two 
of the polygons, of N-p>(P). Let C be such a curve that has a decomposition into as few 
such arcs as possible, say Ci,..., Cm. If m = 2, C is contained in the union of two polygons 
of N-pi(P), and the intersection of these polygons is nonempty (it contains the common 



endpoints of the arcs); but the union of two intersecting convex polygons is evidently simply 
connected, so C can be deformed to a point, contradiction. For each i, let Qi be (one of) 
the polygon(s) that contains C,-; by the minimality of m, successive Q,'s must be distinct. 
Let C leave Qi and enter Q,+1 (modulo m) at pt-, which is a point of Q, n Qi+i. Since Qi is 
convex, the arc C, from p,_i to pi can be deformed into the line segment Pi-iPi, which lies 
in Qi. Suppose Qi-i,Qi,Qi+i had a common point p. Then we could continuously deform 
C by moving p;_i in Q,_i H Qi and pi in Qi (~l Qi+i until they both coincide with p; this 
reduces pi_ipi to the single point p, so that d is now a degenerate arc, contradicting the 
minimality of m. Hence any three successive Q's must be disjoint. Since V is SN, Qi-i D Q,- 
and Qi H Qi+i must both intersect P; hence we can continuously deform C by moving pi_i 
in Qi-i n Qi and pi in Q, fl Q,+i until they both reach P. The line segment pi-xpi then lies 
in P, so we can replace Q, by P. As just shown, Qt = P,Qi+i, and Qi+2 must be disjoint; 
but this implies that Q,+1 Pi Qi+2 must be disjoint from P, contradicting SN. D 

Theorem 2: Let V be such that, for any V C V and any P 6 V, Npi(P) is simply 
connected; then V is SN. 

Proof: We first show that if Px,..., Rk is a minimal set of neighbors of P that violates 
SN, then there exist i, j such that P 0 i?t and P n Pj are disjoint. Note first that if k = 2, 
P D Pi and P D P2 must be disjoint (if not, Pi n P2 would intersect P and we would not 
have a violation of SN). For k > 2, if all the P fl P's are vertices of P they cannot all be 
the same (otherwise SN would not be violated); hence two of them are disjoint. If P n Ri 
is an edge and some P D Rj is a vertex, if it were a vertex of that edge we could eliminate 
Rj and still have a violation of SN, contradicting minimality; hence it is not a vertex of 
that edge, so is disjoint from P H P,. Finally, suppose all the P fl P's are edges. An edge 
can intersect at most two other edges, so if there are three or more other edges, we have a 
disjoint pair. If there are only two other edges, they are disjoint unless P is a triangle; but in 
that case the intersection of all three Pi's is empty, so SN is not violated. Thus in all cases 
there exist Ri,Rj such that P (1 P, and P n Rj are disjoint; and this implies that Ri D Rj 
(which is nonempty, since it contains the intersection of all the P's) cannot intersect P, so 
that V = {P, Pi, Rj} is in fact the minimal violation of SN. 

Let p, pi, pj be points in Ri f] Rj, P n Pi, and P D Rj, respectively. Thus p,pi and 
pj form a triangle T such that each of P, P,- and Rj contains an edge of T and does not 
contain T's third vertex. This also implies that T is nondegenerate. [Indeed, if its vertices 
were collinear, one of the edges of T would contain the other two and so one of P, P,-, and 
Rj would contain all three vertices, contradiction.] This also implies that no one of P, Ri 
and Rj can contain T. Now the interior of T is surrounded by the edges of T; hence it is 
surrounded by P URi U Rj(= Np-(P)). If we can show that the interior of T is not contained 
in P U Ri U Rj, it will follow that Np>(P) has a hole, and hence is not simply connected. 

Since no one of P, P,, Rj can contain T, we are done unless at least two of them intersect 
the interior of T. We shall show that the interior contains a vertex. Suppose P,nPj intersects 
the interior. If P, fl Rj is contained in the interior, the interior contains a vertex of P,- n Rj. 
[By normality, P,- D Rj must contain a vertex.] If Ri D Rj intersects the interior but the 
interior contains no vertex, then Ri D Rj must be an edge and must intersect the boundary 
of T at two points. But P, D Rjf) (the boundary of T) is the point p. [Ri n Rj cannot 
intersect piPj. Suppose it intersects ppi or ppj (say the latter) at some point other than p. 



Then by normality ppj must be a subset of the edge RiCiRj; but this implies that Ri contains 
Pj, contradiction.] Thus the interior contains a vertex, say v. To fill the 2D space around 
v at least three polygons must meet at u; but this implies that P D Ri fl Rj is nonempty, 
contradiction. D 

The regular square or hexagonal tessellation of the plane is evidently SN; but the regular 
triangular tessellation is not. (For any triangle T, there are two triangles A, B that intersect 
T in vertices at opposite ends of an edge and that also share a vertex; thus / = A fl B is 
nonempty but does not intersect T.) Note that in the "subtessellation" obtained by omitting 
one of each pair of triangles that share an edge (e.g., omitting all the triangles whose bases 
face northward), the neighborhood of any triangle is in fact not simply connected (indeed, 
it has three holes). 

3    The three-dimensional case 

A set V of convex polyhedra in 3-space will be called normal if 

a) Each polyhedron is nondegenerate (i.e., has a nonempty interior) 

b) The intersection of any two of the polyhedra is a face, an edge, a vertex, or empty 

Evidently, three or more polyhedra of V cannot share a face; thus their intersection must be 
either an edge, a vertex or empty. If V covers 3-space, it will be called a tessellation. 

The neighborhood N-p(P), and strong normality, are defined as in the two-dimensional 
case. 

Theorem 3: If V is SN, then for any V C V, the neighborhood NV>(P) of any P e V 
is simply connected. 

Proof: Suppose N-p>(P) has a tunnel; then there exists a closed curve in N-p'(P) that 
cannot be reduced to a point. The proof that this contradicts SN is exactly as in the two- 
dimensional case, with "polygons" replaced throughout by "polyhedra", and "two" replaced 
by "two or more" in the first sentence. 

Suppose next that N-pi(P) has a cavity K. P is the intersection of a finite number of 
half-spaces bounded by the planes containing its faces. Evidently, K cannot be contained 
in all of these half-spaces; thus there exists a plane II containing a face of P, such that P is 
on one side of II and some point of K is (strictly) on the other side. Since K is bounded, 
we can translate II parallel to itself, away from P, until no point of K lies beyond it; let 
II' be the position of II when this happens, so that K intersects II' but does not extend 
beyond II'. Since K is bounded by a finite set of polyhedra belonging to Np'(P), it has a 
polyhedral shape; thus it intersects II' in a set of polygonal regions (possibly degenerate). 
Let p be a vertex of one of the regions. In a sufficiently small neighborhood of p, since p is 
a vertex, K cannot occupy the entire halfspace on the side of 11' toward II; in fact, p must 
lie on at least three noncoplanar faces F{ of K. Let F{ lie in plane II;, and let Qi be the 
polyhedron of N-pi(P) that bounds K along face Fj. Thus II,- divides Rz into the halfspaces 
Hi, H[ such that each Qi lies in Hi and, in a sufficiently small neighborhood of p, K lies 
in each H[ and is their intersection. Thus this intersection lies on the side of II' toward II, 



so that the intersection of the Pj's, hence the intersection of the Q,'s, lies on the side of W 
away from II, and this intersection is nonempty since it contains p. Since P lies on the side 
of II away from II', P is thus disjoint from the intersection of the Q,'s, contradicting SN. 
[A two-dimensional version of this proof could have been used to show that N-pi(P) (in 2D) 
cannot have a hole.] D 

Theorem 4: Let V be such that, for any normal V C V and any P € V, Nr>(P) is 
simply connected; then V is SN. 

Proof: We first show that if Pi,..., Rk is a minimal set of neighbors of P that violates 
SN, then (a) there exist i,j such that P n Pj and P 0 Rj are disjoint, or (b) there exist 
i,j, k such that P n Ri D Rj, P n Rj n Rk and P n Ri n Pfc are disjoint. Note first that if 
& = 2, JP D Ri and P D P2 must be disjoint, since otherwise SN would not be violated. For 
k > 2, note that if any P D Pj n Rj is empty, then P fl P, and P Pi Pj are disjoint, so that (a) 
holds; hence we can assume that every intersection of P and two P's is nonempty. If every 
pair of P n P's intersects (i.e., (a) is not true), if some P H P, n Rj is a vertex it cannot 
be in P n Rk for every k ^ i, j (otherwise SN would not be violated); hence for some k, 
P H Pj fl Pj, P n Rj n Rk and P n P, D Rk must be disjoint, so that (b) holds. Similarly, 
if some P n Pj fl Rj is an edge, and some P n Rk doesn't intersect it, then P n Pj fl Rj, 
P n Rj n Rk, and P n Pa n Rk must be disjoint, so that (b) holds. Finally, if all the P fl P's 
intersect the edge P fl Pj fl Pj, then there must exist Rk, P/ such that Rk meets that edge 
at one vertex, say pk, and Ri meets it at the other vertex, say pi (otherwise SN would not 
be violated). We now show that P fl Rk D P/ is either disjoint from P n Pj or disjoint from 
P fl Rj. If not, suppose P Pi Rk 0 P/ meets P n P,- at p, and meets P D Pj at pj. pt- and pj 
cannot be identical, because Pf)Rk and Pf)Ri meet P D P,- D Pj at different vertices; thus 
P fl Pjt D Ri must be the edge piPj. For the same reason, p,- and pj cannot be the same as 
pk or pi. Thus Pi,Pj,pjt,P/ are distinct vertices of P; moreover, P D Pj (~l P* contains p,- and 
Pfc, so must be the edge Pipk; and P fl Pj fl Rk contains pj and p*, so must be the edge pjpk. 
Thus PiPjPk is a triangle, and must be the face P D P*. Similarly, PiPjpi is a triangle and is 
the face P fl P/; p,-pfcpj is a triangle and is the face P fl P,-; and pjpjtpj is a triangle and is the 
face P D Rj. Hence P is a tetrahedron; but this means that the intersection of P,, Rj,Rk, Ri 
is empty, so that SN is not violated. Thus P ("I Rk fl P; is either disjoint from P fl P, or 
disjoint from Pf\Rj, say the former; but then P n Ri n P*, P ("1 Pfc D P/ and P n P,- fl P; are 
disjoint, so that (b) holds. 

If (a) is true (i.e. PflP,- and PnPj are disjoint) then Ri,Rj is the minimal set of neighbors 
of P that violates SN. Let V = {P,Ri,Rj}. Obviously, V C V and NT,{P) = P U P,- U Pj. 
Let C be a closed curve in Np>(P) that passes through each of the intersections P fl P,, 
P fl Pj and P, D Pj. Suppose we can deform C so that it leaves any of the polyhedra, say 
Ri. Before C leaves Ri it had an arc from a point of P D Ri to a point of Pj fl Rj, passing 
through Ri. Hence just after C leaves Ri it must have points arbitrarily close to P fl P, and 
Ri D Rj. Since P fi P, is disjoint from Rj, the end of the arc that was previously in P D P,; 
cannot be in PJ; hence it must be in P. Similarly, since Pj D Rj is disjoint from P, the end 
that was previously close to R{ f) Rj cannot be in P; hence it must be in Rj. Since the arc no 
longer lies in Pj, to get from the endpoint in P to the endpoint in Rj it must pass through 
P D Rj. Just after the arc leaves Pj, it must be arbitrarily close to PJ; hence it cannot pass 
through P D Pj, which is disjoint from Pj. Thus the curve cannot leave Pj, and similarly it 



cannot leave Rj or P, so it cannot be reduced to a point, so that Npi(P) — P U Ri U Rj is 
not simply connected. 

If (a) is not true then (b) is true, so that there exist i,j, k such that P fl Ri D J?j, 
PniJj-n Äfc, and Pr\Rkf) Ri are disjoint. Let V = {P,Ri,Rj,Rk}- Since the i?'s violate 
SN, their intersection must be nonempty; in particular, Ri f) Rj fl Rk is nonempty and so 
contains some vertex p. As noted earlier, since (a) does not hold, P fl Ri fl Rj, P ft Rj fl iS^, 
and P fl i?^ Pi il; must all be nonempty; let pk pi, pj be vertices in these intersections, and 
let T be the tetrahedron defined by these four vertices. Note that p, pi, pj are all in R^, 
p, pj, pk are all in Rf, p, pk, pi are all in RJ; and pi, pj, pk are all in P. Thus each of 
P, Ri, Rj, Rk contains a face of T. On the other hand, since the i?'s violate SN, p is not 
in P, pi is not in Ri, pj is not in Rj, and pk is not in Rk, so that none of P, Ri, Rj, Rk 
contains T. This also implies that T is nondegenerate. [Indeed, if its vertices were coplanar 
(or collinear), two of the triangles (possibly degenerate) defined by triples of the vertices 
would partially intersect; but this implies that the polyhedra containing these triples must 
partially intersect, contradicting normality, or that one of them contains the other and so 
contains all four of the vertices, contradiction.] Now the interior of T is surrounded by the 
faces of T; hence it is surrounded by P U Ri U Rj U Rk(= N-p'(P)). If we can show that the 
interior of T is not contained in P U Ri U Rj 0 Rk, it will follow that N-pi(P) has a cavity, 
and hence is not simply connected. 

As we just saw, no one of the polyhedra can contain (the interior of) T. If none of them 
intersects the interior, we are done. If one of them intersects the interior, since it cannot 
contain the entire interior, we are also done unless another one also intersects the interior. 
We shall show that the interior contains a vertex. Suppose Ri and Rj both intersect the 
interior. If Ri f) Rj is contained in the interior, the interior contains the vertices p and pk. 
If Ri H Rj intersects the interior but the interior contains no vertex, then Ri C\ Rj intersects 
the surface of T. But Ri fl RjC\ (the surface of T) is the line segment ppk, which is an edge 
of T, so that no subset of that line segment intersects the interior of T, contradiction. We 
have thus proved that the interior of T contains a vertex, call it v. All four polyhedra cannot 
meet at v, since V violates SN; and if only two of them meet at v, they cannot fill up the 
space around v; hence exactly three of them must meet at v, say Ri, Rj, and Rk- Let pj 
be a vertex that is common to two of them (Ri and Rk). If vpj is an edge, three polyhedra 
are needed to fill the space around it, and since pj is not in Rj, the third polyhedron must 
be P, so that v is in all four polyhedra, contradiction. Hence Ri D Rk must be a face F, 
and vpj is a diagonal of F. Now F intersects the surface of T in the line segment ppj. The 
sequence of edges of F from v to pj, not passing through p, must all be in the interior of T; 
let vx be the first of these edges. If vx is common to Ri, Rj, and Rk, then the diagonal px 
of F is also common to Ri, Rj, and Rk, so that F is common to all three of them, which is 
impossible. But if vx is common to Ri, Rk, and P, then v is common to all four polyhedra, 
contradiction. D 

4    Concluding remarks 

We have defined intersection constraints on a set of convex polygons or polyhedra that must 
be satisfied to insure that the neighborhood of any polygon or polyhedron in the set is simply 



connected. It would be of interest to extend our results to more general classes of discrete 
spaces such as those studied in some of the references in [2]. 
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